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Summary

Gate-model quantum computers are theoretically capa-
ble of exceptional performance in certain applications, al-
though it is unclear how useful they will be in general. The
Quantum Approximate Optimization Algorithm (QAOA) of
Farhi et al. [1] has been proposed as a possible path towards
making gate-model quantum computers e�ective at solving
problems in combinatorial optimization [2, 3].

Recently, Rigetti Computing published results of QAOA run
on their 19-qubit gate-model quantum computer [4]. The
inputs they considered can also be solved on D-Wave quan-
tum annealing systems, providing an opportunity to com-
pare the two quantum processing units (QPUs) directly. Re-
producing their tests, we found the probabilities of return-
ing an optimal solution to be 99.6% for the D-Wave 2000Q
and 0.001% for the Rigetti 19Q. In addition, the D-Wave
2000Q was able to solve 102 copies of the problem in par-
allel. The advantages in quality and size of the D-Wave
2000Q, taken together, provide an improvement of 10 mil-
lion times in terms of ground-state throughput per sample.

Also notable in Ref. [4] are results for QAOA running on
a classical simulation of a noiseless gate-model quantum
computer. Even when running on a small, easy input using
ideal hardware, QAOA success probabilities appear to be
four orders of magnitude lower than D-Wave QPU success
probabilities. This indicates that the single step of QAOA
used in Ref. [4] is insu�cient. Running more steps of QAOA
as necessary will require signi�cantly higher coherence and
lower error rates.

The results in Ref. [4] do not provide evidence that QAOA
will be practical for solving these problems on near-term
gate-model devices.
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Figure 1: Success probabilities for Rigetti 19Q, Rigetti Quan-
tum Virtual Machine (QVM) simulator, and D-Wave 2000Q
on the 19-qubit input from Otterbach et al. [4]. The Rigetti
19Q is a gate-model quantum computer and the Rigetti QVM
is a noiseless classical simulator, in this case simulating the
19Q. The Rigetti QPU and simulator both run the quan-
tum approximate optimization algorithm (QAOA) [1]. The
D-Wave 2000Q runs the quantum annealing algorithm (QA)
[5]. The success probabilities from QAOA are at least 4 orders
of magnitude lower than those from the D-Wave quantum an-
nealing system.
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1 Introduction
Until recently, there has not been the opportunity to
compare the D-Wave quantum processing unit (QPU)
with any quantum competitor. This is in part be-
cause the competition is far less mature, and in part be-
cause all notable competitors are gate-model quantum
computers that specialize in different classes of prob-
lems than D-Wave’s quantum-annealing QPUs. How-
ever, Rigetti Computing recently published a study [4]
demonstrating the use of the Quantum Approximate
Optimization Algorithm (QAOA) of Farhi et al. [1],
which has been proposed as a means to make gate-
model quantum computers useful for applications in
combinatorial optimization. D-Wave QPUs are flexible
platforms for heuristically solving optimization prob-
lems. This provides an opportunity to compare the two
directly.

2 Inputs from the Rigetti study
The problems studied by Otterbach et al. [4], i.e., the
Rigetti inputs, are Ising models with all antiferromag-
netic (AFM) couplings. This restricted subclass of
Ising model inputs is computationally difficult (NP-
complete) in general. However, when the underly-
ing graph is bipartite, as is the case for the Rigetti in-
puts, the problems are trivial: Ising models with all
AFM couplings cannot have any frustration on bipar-
tite graphs because there are no odd cycles. Seen an-
other way, if the underlying graph is bipartite, a spin-
reversal transformation can be applied to make all cou-
plings ferromagnetic (FM); a ferromagnet is trivial to
solve in linear time using a greedy method.

The authors describe their inputs as examples of un-
supervised machine learning, specifically, clustering.
However, this problem is equivalent to MAX-CUT,
which is a type of discrete optimization problem.

The specific coupling values chosen for the Rigetti in-
puts were randomly generated, though the exact gen-
eration method is not clear from the paper. Coupling
values appear to be between 0 and 1, and Figure 3 of
Ref. [4] shows one of the inputs (we show this as Fig-
ure 2). The input from this figure is the one we use for
testing on the D-Wave 2000Q system.
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Figure 2: Working graph of the Rigetti 19Q, along with an in-
put. The partition of the qubits into two disjoint independent
sets is indicated by red circles and blue squares. Qubit 3 is
not usable and is therefore omitted from the figure. Edge la-
bels indicate the coupling values of one of the Rigetti inputs
provided, which is the input we used in our experiments.

3 Rigetti 19Q
The inputs from the Rigetti study have 19 binary vari-
ables and a solution space of 219 states, two of which
are ground states. Random sampling from the solution
space therefore has a success probability of 2/219 =
2−18. In the remainder of this section, we show how
we infer the success probability of the Rigetti 19Q as
slightly less than 1/100,000.

Performance numbers for the Rigetti 19Q are extracted
from the text and plots of the Rigetti Computing paper
by Otterbach et al. [4], posted to arXiv on December 15,
2017. We specifically cite version 1 of this arXiv posting
so that we can refer to figures in that paper by number.

Because the authors do not explicitly state the success
probability (ground-state probability) for their proces-
sor, we must infer it; we rely primarily on Figure 5 of
Ref. [4].

Our calculation of the ground-state probability is as fol-
lows:

• The probability of reaching a ground state after 55
steps of 2500 samples each is roughly 73% (see Fig-
ure 5 of Ref. [4]).

• We make the simplifying assumption that the sam-
ples are independent and identically distributed.
While this should not be true in general, particu-
larly if the parameters of QAOA make a difference,
in both Figure 5 and Figure S1 of Ref. [4], the suc-
cess probability does not increase perceptibly over
the course of the 55 steps.
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• Where N is the total number of independent
Bernoulli trials and pT is the probability of having
at least 1 success (i.e., ground state), the success
probability p for a single trial is as follows:

(1 − p)N = 1 − pT (1)

p = 1 − exp
log(1 − pT)

N
. (2)

• Using values of N = 55 · 2500 and pT = 0.73 in
Equation 2, we get a success probability of p =
9.52 × 10−6, or slightly less than 1/100,000.

• To check our method, we do the same for the ran-
dom sampler, for which pT is roughly 0.4. We get a
success probability of p = 3.72 × 10−6, giving our
method an error of 2% relative to the true value of
2−18 = 3.81 × 10−6.

We note that the Rigetti QPU success probabilities are
no more than three times better than random sampling,
and that tuning QAOA parameters using Bayesian op-
timization does not appear to have any effect on perfor-
mance. This can be explained by a mismatch between
the design purpose of QAOA and the metric used to
evaluate its performance: this issue is addressed in the
next section.

4 Simulated QAOA
In addition to the empirical study of QAOA, Otterbach
et al. [4] simulated an error-free quantum computer
running QAOA as it was implemented on the Rigetti
QPU (see ‘Rigetti QVM’ in Figure 5 of Ref. [4]). While
QVM results were significantly better than those for the
Rigetti QPU, they were unimpressive considering the
trivial nature of the inputs.

Although success probabilities for the Rigetti QVM are
slightly more challenging to estimate from Figure 5 of
Ref. [4], they appear to be consistent with indepen-
dent Bernoulli trials where each batch of 2500 samples
contains a ground state with 20% probability. (While
one would not expect the assumption of independent
Bernoulli trials to hold, the empirical data from the
Rigetti QVM simulator does not appear to reject this
null hypothesis.) This gives a single-sample success
probability of 9 × 10−5.

QAOA is an approximation algorithm that (under ideal
closed-system conditions that exist on the QVM) guar-
antees to find a cut that is within a fixed ratio ρ ≤ 1
of optimal. The value of ρ depends on a parameter p
corresponding to the depth of the circuit used to im-
plement QAOA. For example, Farhi et al. [1] show that
on bipartite graphs with p = 2, the algorithm always
finds cuts at least ρ = 0.7559 as good as optimal; this
ratio increases with p.

Note that having a bound on ρ for low-valued p says
nothing about the probability of finding optimal solu-
tions, and there is no reason to expect QAOA to per-
form well under the success-probability metric used in
Ref. [4]. Given that the authors were only able to im-
plement a single step of QAOA (p = 1) on their QPU,
the performance of QAOA on QVM under this metric
suggests that low expectations are appropriate.

Recent empirical studies of QAOA in error-free simu-
lation [6, 7] have shown that performance improves as
the number of steps p increases. A deeper study [8]
shows that 1 − r, the relative distance to optimal, actu-
ally decays exponentially as a function of p. Zhou et
al. [8] also provide an efficient heuristic for finding ap-
proximately optimal parameters for QAOA, removing
a significant barrier to its practical use. A similar study
measuring the effects of errors and decoherence on the
performance of QAOA is a crucial next step in evaluat-
ing the algorithm’s potential.

5 D-Wave 2000Q
The working graph of the Rigetti 19Q can be embed-
ded into a D-Wave 2000Q graph using 2.5 Chimera unit
tiles.1 Two copies of the Rigetti graph can be placed in
5 Chimera tiles (a 3× 2 Chimera graph with one corner
tile removed). This 5-tile double embedding can then
be placed many times on a large Chimera graph. These
experiments were performed on a D-Wave 2000Q QPU
with all 2048 qubits available; 102 independent copies
of the Rigetti 19Q graph can be placed on this graph
(see Figure 3).

While the Rigetti inputs have no frustration, D-Wave

1A Chimera unit tile is an 8-qubit tile—4 horizontal qubits and 4
vertical qubits—that is repeated in a square grid to make the Chimera
topologies on which all commercially available D-Wave QPUs to date
have been built.
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Figure 3: 102 independent copies of the Rigetti 19Q working graph embedded on a D-Wave 2000Q working graph.
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QPUs may still return excited states due to thermaliza-
tion, analog noise, etc. However, results like this are
rare because the inputs are so small.

A test using the Rigetti input shown in Figure 2, em-
bedded as described above on the D-Wave 2000Q sys-
tem, returned the following results:2

• Submitting the problem as-is with autoscale off
(i.e., not using the entire dynamic range of the
QPU), we saw success probabilities of 98%.

• Submitting the problem as-is with autoscale on,
increasing energy scales by 23%, we saw success
probabilities of 99%.

• Applying a spin-reversal transformation (SRT) to
the problem to turn all J values negative (FM), then
exploiting the extended negative J range to double
the energy scale, we further increased the success
probability to 99.6%.

• Scaling the problem down to fit within 1% of the
D-Wave 2000Q QPU’s FM range, effectively simu-
lating a 100-fold increase in noise and analog er-
rors, we still saw success probabilities roughly 7
times higher than the Rigetti 19Q.

The above results held true whether we were solving
one copy of the input in isolation, or whether we were
solving 102 copies in parallel.

6 Wall-clock comparison
Wall-clock time is not a metric of great interest in such
a lopsided comparison. However, we can determine
the order of magnitude advantage that we see in the
D-Wave 2000Q over the Rigetti 19Q. In the Rigetti
study, the wall-clock time for 55 steps of 2500 sam-
ples was reported as approximately 10 minutes; this is
the time required to return on the order of 1 ground
state. The wall-clock time to receive a single sample
from a D-Wave 2000Q is roughly 60 ms. Thus D-Wave
can obtain a ground state in 60 ms as opposed to 600 s;
this is 10,000 times faster. Note also that in this time,
the D-Wave QPU obtains on the order of 100 ground

2We report success probabilities for an individual embedding of
the 19-qubit input; we run 102 copies of this input in parallel.

states; however, because these are obtained in paral-
lel, this factor of 100 does not contribute to the latency
advantage.

It is worth noting that the D-Wave 2000Q wall-clock
time could be improved significantly were it possible
to program, and read-out, only 1% of the D-Wave QPU
at a time. As things stand, even if only 1% of the
D-Wave QPU is needed to solve a problem, the current
programming API requires that all the biases and cou-
plings in the QPU be programmed, whether they are
needed to solve the problem or not. This adds an over-
head that is not necessary when solving such a triv-
ial problem. However, even with that overhead, the
D-Wave QPU still beats the Rigetti chip with regard to
wall-clock time by a significant factor.

7 Conclusion
In what is the most direct comparison between a
D-Wave QPU and a competing QPU to date, the matu-
rity and quality of D-Wave QPUs become clear. While
the Rigetti QPU is only slightly better than random
sampling at finding ground states, the D-Wave QPU
returns almost nothing but ground states. In terms of
ground-state probabilities, the D-Wave QPU is 100,000
times better than the Rigetti QPU. Even when we sim-
ulate a 100-fold increase in noise and misspecifications
on the D-Wave 2000Q, it still significantly outperforms
the Rigetti 19Q. Furthermore, because the D-Wave QPU
is so much larger, it can solve 102 copies of the problem
in parallel.

While the Quantum Approximate Optimization Algo-
rithm (QAOA) has been proposed as a way to make
gate-model quantum computers applicable to opti-
mization problems [2, 9], the results of Ref. [4] cannot
be used to argue that this algorithm will be useful in
practice. Recent studies of QAOA in error-free simu-
lation show promising results, with performance im-
proving with the number of steps p of QAOA [6–8].
However, we are unaware of similarly promising re-
sults that account for errors and decoherence.

In conclusion, while QAOA is of great theoretical in-
terest, quantum annealing is currently many orders of
magnitude more performant in practice, and there is lit-
tle evidence suggesting that this will change in the era
of noisy intermediate-scale quantum computers.
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